
Progress Measures and Stack Assertions

for Fair Termination

Nils Klarlund”

IBM T.J. Watson Research Center

PO BOX 704

Yorktown Heights, New York

Abstract

Floyd’s method based on well-orderings is the standard

approach to proving termination of programs. Much

attention has been devoted to generalizing this method

to termination of programs that are subjected to fair-

ness constraints. Earlier methods for fair termina-

tion tend to be somewhat indirect, relying on program

transformations, which reduce the original problem to

several termination problems.

In this paper we introduce the new concept of stack
assertions, which directly—without transformations—

quantify progress towards fair termination. Moreover,

we show that by one simple program transformation

of adding a history variable, usual assert ional logic,
without jixed-point operators, is sufficiently expressive

to form a sound and relatively complete method when

used with stack assertions. This result is obtained as

part of a substantial simplification of earlier complete-

ness proofs.

1 Introduction

Fairness is the assumption that an action that is en-
abled over and over will eventually be taken. Such
assumptions are central to many distributed or con-
current systems. The fair termination problem—how
to prove that a program terminates under assump-
tion of fairness—is typical to much reaaoning with
fairness, and many methods for this problem have
been suggested; see [A083, AFK88, DH86, FK84,

*This work was mainly carried out while the author was
with the IBM T.J. Watson ResearchCenter. The work hasalso
been supported by an Alice & Richard Netter Scholarshipof
the Thanks to ScandinaviaFoundation, Inc.; Forskerakademiet,
Denmark; and Esprit Basic ResearchAction Grant No. 3011,
Cedisys.Author’s current address:Aarhus University, Depart-
ment of Computer Science,Ny Munkegade,DK-8000 Aarhus,
Denmark. Email: klarlund@daimi. aau.dk.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

PoDC ‘92-81921B.C.

01992 ACM 0-89791 -496-1 1921000810229 . ..S1 .50

Fra86, GFMdRv85, LPS81, MP91, SdRG89]. Most of
the methods build on Floyd’s approach of using well-
ordered sets as a measure of how close the program
is to t erminat ion. Floyd’s ideas allow one to anno-
tate the unaltered program with assertions expressing
closeness to termination, whereas many of the earlier
methods for fair termination depend on changing the
program. The modifications either consist of adding
new program variables and unbounded nondetermin-
ism, or involve recursive y applied proof rules that
transform the program. Unfortunately, these modi-
fications tend to obscure how each step of the original
program contributes to fair termination.

The goal of this paper is a lucid and practical ap-
proach for showing fair termination without repeated
or drastic transformations. Our approach is based
on the novel concept of progress measure introduced
in [Kla90]; see also [Kla, KK91, Kla91, KS93]. A
progress measure is a function on the states (or histo-
ries) of the unaltered program. The value of the func-
tion for a given state quantifies-in a certain mathe-
matical sense—how close that state is to satisfying a
property about infinite computations. The property is
defined by a specification, which characterizes states
(or histories), and by a limit condition, which when
applied to the specification defines the allowed infinite
computations.

The property, for example, could be that every infi-
nite computation is unfair—this means that the pro-
gram fairly terminates. In this case, the specification
characterizes for each state which actions are enabled
and which are taken; the limit condition expresses the
fixed temporal meaning of unfairness: some action is
enabled infinitely often while being taken only finitely
often.

An essential property of a progress measure is that on
every program transition, its value changes in a way
ensuring that the computation converges according to
the limit condition. This requirement can be formu-
lated as verification conditions, which allow verifica-
tion of global properties (on infinite computations) in
terms of local reasoning (about states and transitions).

229

This correspondence is especially meaningful if the lo-
cal reasoning can be done for an unmodified program,
in which case it becomes clear what the exact contri-
bution of each program step (by each process) is to-
wards the global behavior. In this paper we provide a
practical tool, called a stack assertion, that provides
such an understanding for distributed or concurrent
programs that fairly terminate. The stack assertions
of a program define a mapping, called a fair t errnina-

tion measure, that describes how close each program
state is to fair termination.

The contributions of this paper are both practical and
theoretical. We demonstrate the usefulness of stack
assertions by examples. For distributed or concurrent
programs, our examples indicate a direct way of con-
tributing “lack of progress towards termination” to
“progress towards unfair execution” as expressed by
a hierarchy of unfairness hypotheses. Stack assertions
form the natural framework for expressing this hierar-
chy and summarize in a single data structure the in-
formation obtained by the program transformations of
previous methods. Since the need for transformations
has been eliminated, stack assertions can be added to
existing assertional methods for concurrent and dis-
tributed programs.

There are two theoretical results of this paper. The
first is a new completeness proof—substantially sim-
pler than earlier proofs that involve transfinite induc-
tion or results from topology—that explains why a
fair termination measure always exists for programs
or distributed systems that fairly terminate.

The second result is that by adding a history vari-
able to a program, the fair termination measure can
be expressed by means of stack assertions in any rea-
sonably expressive assertion language (i.e. a language
that includes arithmetic).

In some earlier work on expressing assertions about
fair termination [SdRG89, Mor90, MP91], predicate
calculus is combined with fixed-points and ordinals.
For an arbitrary program, this calculus allows to char-
acterize precisely the states from which all infinite
computations are unfair.

In the present paper we show that with the addition
of a history variable, an assertion language contain-
ing only predicate calculus is sufficient for a proof of
fair termination from the initial state. In our method,
well- foundedness is expressed not by fixed-point logic
in program assertions, but as an additional require-
ment that a relation, expressed by the program as-
sertions, is well-founded (has no infinite descending
chains.) Observe that adding history information (as
for example is also done in methods for verification
with nondeterministic automata [AL91, Sis91]) is a
benign transformation in that it has to be done only

once and basically does not change the transitional
structure of the program; in particular, no additional
nondeterminism is added.

2 Verification Methods for Fairness

A fairness constraint partitions infinite computations
into fair and unfair ones. In this paper we shall con-
centrate on strong fairness, which is one of the most
important fairness concepts. According to this crite-
rion, a computation is fair if commands (or processes,
statements, actions, events,. ..) that are enabled in-
finitely often are also executed infinitely often. (It is
assumed that the number of different commands is fi-
nite.) Thus an unfair computation is one where some
command is enabled infinitely often but only executed
finitely often. A program P fairly terminates if ev-
ery infinite computation of P is unfair. A verification

method for fair t erminat ion is defined in terms of ver-
ification conditions expressed in the style of Hoare’s
logic. To be useful a method must be sound, i.e. any
program for which the verification conditions can be
satisfied must fairly terminate. The method is com-

plete if the verification conditions can be satisfied for
any program that fairly terminates.

Complete verification methods for strongly fair ter-
mination are considered in [GFMdRv85, LPS81,
SdRG89]. These methods are based on helpful di-
rect ions, which indicate program statements that are
being unfairly executed. The approach of helpful
directions has been successful at explaining many
fairness concepts, such as those involving general
state predicates [FK84] or an infinite number of com-
mands [Mai89]. All these methods involve the re-
cursive use of proof rules that are applied to trans-
formed programs. Thus they tend to depend on par-
ticular syntactic properties of the underlying program
language [Fra86, page 117] (although a way of cir-
cumventing these syntactic dependencies is indicated
in [Fra86, section 2.4]).

The methods of explicit schedulers de-
veloped in [A083, APS84, DH86] involve transform-
ing programs by adding auxiliary variables that are
nondeterministically assigned values determining fair
computations. Because they involve rather drastic—
even “cruel” [D H86]—program transformations, these
methods also deal with fairness in a somewhat indirect
manner. For an extensive treatment of fairness based
on helpful directions and explicit schedulers, see the
book [Fra86].

In [SdRG89] it was shown how predicate calculus aug-
mented with fixed-points can be used to express as-
sertions about fair t erminat ion. This calculus can
express inductively dejinable relations [Mos74], which

230

are needed in their proof. 1 Usually, however, asser-
tional reasoning is based on ordinary predicate calcu-
lus, which corresponds to arithmetic relations [Rog67].
Earlier, Apt and Plotkin, motivated by the relation-
ship mentioned above between fairness and nondeter-
minism, gave a semantic model for countable nonde-
terminism [AP86]. In addition, they provided a rel-
atively complete proof system for termination, also
based on tied-point logic.

Using a fragment of fixed-point calculus, Manna and
Pnueli formulated elegant proof rules for assertional
reasoning about properties expressed in temporal
logic. For the problem of fair response (which gener-
alizes fair termination), they exhibited a simple proof
rule, which is recursively applied to transformed pro-
grams.

Morris [MoT90] also used fixed-point calculus in his
formulation of a weakest precondition semantics for
fair termination of tail-recursive programs.

The work presented here is also related to the theory
of automata on infinite words. In fact, the condition
of fair termination is but an inst ante of a Rabin pairs

condition, see [KK91], which is a requirement in a spe-
cial disjunctive normal form about the infinite occur-
rence of st ates. The proofs in the present paper could
have been formulated for Rabin pairs conditions (thus
yielding a method for general fairness [FK84]), but
for simplicity of exposition we have used conditions
pert aining to strong fairness.

The Rabin progress measures in [KK91] express
progress towards satisfaction of a Rabin pairs condi-
tions. Applied to fair termination, a Rabin progress
measure maps program states into a special kind of
colored trees. This gives a concise method for fair ter-
mination that does not depend on program transfor-
mations [KK91]. The method is not entirely practical,
however, because there is no natural way to describe
the mapping into the colored tree, which has to be de-
scribed explicitly—obstacles that are overcome in this
paper. For a more detailed comparison, see Section 5.

A concept similar to our stacks is used in [Saf92],
where the problem is to determinize an automaton
with a Streett condition (a special conjunction) or,
equivalently, to express that a Rabin condition holds
along all computations of a nondeterministic automa-
ton by means of a deterministic automaton. For com-
plement ation of tree automata, the last appearance

1The inductively definablerelations are the sameas the l_l~
relations. H: is the classof relations on the form Va : p, where
a is a second-orderobject (such as an infinite computation)
and P is a first-order formula (suchasthe oneexpressingthat a
computation is unfair). The problem of fair termination is I’I; -
complete as is the problem of termination (of programs with
countablenondeterminism).

record of [GH82] serves a purpose different from that of
our stacks, namely to keep enough information about
the past to make finitely represented choices in a win-
ning strategy for a game that is won by satisfying
a conjunction (such as a Streett condition). On the
other hand, stacks in the form of Rabin progress mea-
sures can be used to show that there is no need for
such information when the game is won by a disjunc-
tion (Rabin condition) [Kla92].

Finally, our work is related to more general techniques
for proving liveness properties. Harel showed that
by transformations on trees representing programs
one can do program verification for all finite levels
of the Borel hierarchy [Har86]. Using an automata-
theoretic approach, Vardi gave a verification method
for very general properties, including the Borel hi-
erarchy [Var87]. In Vardi’s framework, progress is
measured relative to a nondeterministic automaton
that defines incorrect computations. In contrast, the
progress measures of [Kla90, Kla] are functions that
relate the program state or history to a finite com-
putation of a correctness specification. With this ap-
proach nondeterminism must be eliminated, since it
makes it difficult to relate program to specification by
means of a function (cf. the work [AL91, KS93, Sis91]
on relating automata defining safety properties). In-
stead more powerful limit conditions than those usu-
ally studied (e.g. Rabin or Streett conditions) are used
to define the infinite computations as limits of finite
ones.

3 Stack Assertions

In this section we review the method of Floyd and ex-
plain how assertions can define a measure of progress
for termination. We argue informally how stack asser-
tions can be used to guarantee fair termination. For
simplicity we present our examples using the language
of guarded commands, but our technique is syntax-
independent and also applies to strong fairness ex-
pressed for other formalisms describing distributed or
concurrent systems.

3.1 Floyd’s Method

For programs occurring in practice it is usually
straightforward to quantify progress towards termina-
tion. This is done in terms of well-founded sets as first
advocated by Floyd [F1067]. A well-founded set (W,>)

is a set W with a binary relation > such that there is
no infinite descending sequence W. + WI + For
an example of proving termination, take the program

Pl:*[z<y ~z:=z+ll

231

consisting of a loop with a single guarded command,
which is executed as long as its guard, x < y, is en-

abled (true). The variables take on integer values.

To argue that PI terminates, we use the mapping

pT = m={y – Z, O} from program states into the well-
founded set of natural numbers O <1 <2<.... Here

and in the sequel, the letter “T” refers to the hypoth-

esis that the programs terminates. The mapping pT

can be called a termination measure, since its value de-

creases with each iteration. The existence of a termi-

nation measure pT guarantees that P terminates, be-

cause an infinite computation pa, pl, . . . would produce

an infinite descending sequence pT(po) > pT(pI) >

. . .
> contradicting the well-foundedness of the natural

numbers.

In practice, the termination measure pT is expressed

by annotating the program with assertions. For P1 a

single assertion suffices:

P1’:*[(T: max{y – z, O})

x<~ +Z:=x+l]

(Here T : max{y – z, O}) is a simple stack assertion.

It asserts that for the termination hypothesis, also

called the T-hypothesis, the value of the termination

mea8ure pT is max{y — Z, O} whenever the loop is to

be executed. Thus it could be called a loop variant2

as opposed to a loop invariant. The latter expresses a

relationship between variables that is preserved under

iterations.

3.2 Fair Termination

With a trivial modification of P1, proving termination

is suddenly more intricate. Consider the program

P2:*[l=:z<y +Z:=z+ln

.&:x<y ~skipl

where the loop is executed as long as x < y by execu-

tion of either of the guarded commands x < y - x :=

z + 1 and z < y ~ skip. The choice is made nonde-
terministically. This program will not terminate if the

second command is always chosen from some point on.

Under assumption of (strong) fairness, however, P2
always terminates, because in an infinite computation

of P2, 1. is only executed finitely often, but enabled

infinitely often; thus the computation is unfair with

respect to command .t’a.

ZThe tem~ Variant function or bound function are ~So
used [Gri81].

The preceding argument was formulated in terms of

infinite computations. In contrast, assertional reason-

ing deals only with program states and single transi-

tions. The key to assertional reasoning about fairness

is:

If there is no progress towards termination,

this can be attributed to some statement be-

ing executed unfairly.

For example, when & is executed, the T-hypothesis is

not active since there is no progress towards termina-

tion. Instead, progress towards executing la unfairly

can be measured. To do this we reformulate the as-

sertion by including the unfairness hypothesis, called

the 1.-hypothesis, that 4. is executed unfairly. Syn-

tactically, this is done by putting “la” on top of the

underlying T-hypothesis; thus we write

(la)T : max{y– z,O} “

This stack assertion expresses a hierarchy in which

the T-hypothesis is the underlying hypothesis and the

rtde of the la-hypothesis is to explain progress when

the underlying hypothesis can not. The annotated

program is now:

P2’:*[
(

la

T : max{y – z-, O} 1
l?a:z<y +Z:=z+lo

f$:~<y --i skip]

Progress is made towards unfair execution in terms

of the &hypothesis whenever la is enabled but not

executed. Note that for any iteration, either

(Va) /= is enabled and not executed, and the under-

lying T-measure remains constant (when ~b is

executed); or

(VT) meSSUre PT decreases (when & is executed).

We can now argue that P2 fairly terminates in terms

of the local conditions (Va) and (VT) as follows. In an

infinite computation, either from some point on (Va)

always applies, or infinitely often (VT) applies. In the

first case, .& is always enabled but never executed.
Hence the computation is unfair with respect to &.

In the second case, it holds that each time (VT) ap-

plies, pT is decreased, and at the other times, when

(Va) applies, pT is unchanged. This yields an infi-
nite decreasing sequence of natural numbers, which is
a contradiction.

Thus we have proved that for any infinite computation

of P2, only the first case is possible, i.e. P2 fairly ter-

minates. This argument will later be generalized to a

232

soundness result, which shows that a verification con-

dition, similar to the local conditions above, always

implies fair termination. For now, however, we moti-

vate this general result by looking at more examples.

3.3 Progress Measures for Unfairness Hy-

pot heses

A more complex situation arises if 1. is sometimes not

enabled when & is executed. In this case the stack

(la
assertion

T : max{y – z,O})
cannot be applied, be-

cause condition (Va) is then sometimes not fulfilled.

If the program fairly terminates, however, we can use

a progress measure p!” for the ta-hypothesis. For an

example of this situation, take:

~3:*[/a:z<yA~mod117=o +z:=z+lcI

tb:x<y +z:=z —1]

This program fairly terminates, because for any in-

finite computation, /= can only be executed finitely

often and the value of z decreases by one each time

& is executed; thus & is enabled infinitely often. We

might annotate the program as follows:

P3’:*[
[

la :zmodl17

T : max{y – z,O})
&:z<y Azmodl17=0 ~z:=z+l U

eb:x<y +z:=z —1]

Here a : z mod 117 denotes that a progress measure
@ = z mod 11’7 is associated with the &hypothesis.

The measure pz” is a measure of how close P3 is to a
state in which la is enabled. For each iteration of the

loop, either

(w measure p~ is unchanged, la is not executed,

and either the value of z was O (mod 117) be-

fore the execution of&, in which case /. was

enabled, or the value of z (mod 117) was be-

tween 1 and 116 and decreases by 1; or

(V!J measure pT decreases.

The local conditions (V!J and (V$) ensure that an infi-

nite computation is unfair with respect to la. Consider

the corresponding infinite sequence of stacks. It must

be the case that from some point on, (V:) applies to

each transition. Thus la is only executed finitely often.

If from some point on it is never enabled, then p~” de-

creases for each iteration thereafter, contradicting the
well-foundedness of the natural numbers. Therefore,

& is enabled infinitely often, and we conclude that any

infinite computation is unfair with respect to 1..

3.4 Unfairness of Several Commands

An even more challenging situation occurs when more

than one command may be executed unfairly. If we

add an empty guarded command to P3, we obtain:

p4:*[~a:z<yAzmod117=o +z:=z+lcI

tb:x<y +Z:=z–in

lc:x<y ~ skip 1

This program fairly terminates, because any infinite

computation is unfair with respect to either /a or lb.

To see this we use the loop variant from P3’ modified

to explain the lack of progress when 4?Cis chosen for

execution. In that case there is progress neither to-

wards termination nor towards executing t= unfairly,

But there is always progress towards something when

a program fairly terminates; in fact, when /c is exe-

cuted, -!?his a candidate for unfair execution because

it is enabled but not executed, Thus we can put the

fj-hypothesis—that & is executed unfairly—on top of

the T- and /.-hypotheses, The annotated program

then becomes:

[

tb
P4’:*[/= : zmod 117

T : max{y - z,O})
&:z<y Azmodl17=0 ~z:=z+l Cl

k?b:Z<y +Z:=%–in

tc:x<y -+ skip 1

This annotation can be used as an argument why P4

fairly terminates in a way similar to the previous ar-

guments.

Note that if earlier methods involving recursive proof

rules had been used instead to show that P4 fairly

terminates, it would have been necessary to reason

about three different programs: the original and two

syntactically derived programs.

4 Verification Conditions, Soundness,

and Completeness

In the preceding section we developed a notation for

reasoning about fairness. For each program we con-

sidered an arbitrary infinite computation and argued,

using the associated stacks, that the computation was

unfair. The rationale for using stack assertions, how-

ever, is to avoid reasoning about infinite computa-

tions. So to obtain an assertional verification method,

we formulate verification conditions for the stacks ex-
pressed by the assertions. When these conditions are

fulfilled for all transitions, we say that the stack as-
sertions define a fair termination measure. We show

233

that if a program has a fair termination messure, then

it fairly terminates. Thus the verification method of

stack assertions is sound.

We also give a completeness result: when a pro-

gram fairly terminates, it has a fair termination mea-

sure. Moreover, we show that under certain conditions

(which are fulfilled if a history variable is added to the

program) then the fair termination measure can be ex-

pressed as program assertions in a reasonably powerful

assertion language.

4.1 The Verification Conditions

To formulate the verification conditions we need a few

definitions. A program P defines a transition relation

~ on a countable set of program states; moreover, P

defines a set of initial program states and a finite set of

commands. A command (or an action, a process, an

event,. . .) is designated by a label /, and P defines for

each program state whether / is enabled or disabled.

A transition p + p’ describes the execution of exactly

one command, which is enabled in p. A path from

PO to pn is a sequence of states PO, p~ such that

pi ~ pi+l for i < n; an infinite path po, pl, . . . is

defined in a similar way. A computation is a finite

or infinite path starting in an initial state. A state

p’ is reachable from state p if there is a path from

p to p’. We assume without loss of generality that

any program state is reachable from an initial state.

(In practice, conventional assertional methods can be

used to describe the reachable program states, since

finite sequences of program states can be encoded as

numbers; see [MP91].)

A progress hypothesis or a-hypothesis is either an un-

fairness hypothesis, on the form 1 or / : w (with a = 4),

or the T-hypothesis, on the form T : w (with a = l),

where w is an element of a well-founded set (W, >).

A stack assignment is a mapping that maps each pro-

gram state p to a list p(p) of progress hypotheses such

that the T-hypothesis is at level O, i.e. at the bottom.

(It can be assumed that all the hypotheses are dif-
ferent, i.e. there is at most one I-hypothesis in p(p)

for each 4.) The stack assertions of a program define

a stack assignment according to the semantics of the

logical language of the assertions. (The exact corre-

spondence is of no import ante here.) For an hypothe-

sis a : w in p(p), where a is a label or “T,” the value
w is called the a-measure at p and is denoted pa(p).

Note that the definitions above are not dependent on
the particular syntax of guarded commands, but de-

pend only on the notions of commands or actions be-
ing “enabled” and “executed.” Thus our soundness

and completeness results apply to strong fairness in all

transition systems. For example, our method applies

to nested commands (“all-level fairness,” see fFra86]).

The verification conditions are expressed in terms of

active and non-invalidated hypotheses: essentially, an

&hypothesis is active if progress towards unfair exe-

cution of 1 is made, and it is non-invalidated if 1 is not

executed. The T-hypothesis is active if the program

gets closer to termination; the T-hypothesis is always

considered non-invalidated.

The verification conditions can now be stated some-

what informally:

(VF) On any program transition,

●

●

●

there is some active hypothesis;

the active hypothesis and the ones below

are non-invalidated;

and the stack does not change below the

active hypothesis.

The meaning of this is illustrated in Figure 1. Here the

program transition is p + p’. The active hypothesis a

is at the same level in the stacks p(p) and p(p’), and

everything below (denoted by S in the figure) remains

unchanged. Formally, the verification conditions (VF)

are:

(VA) Some a-hypothesis is active, i.e. either

● a is a label 4 and command 1 is enabled

(in state p or p’), or

● w = pa(p) and w’ = pa(p’) are defined

with w + w’.

(VN..I) Every hypothesis below and including the a-
hypothesis is non-invalidated i.e. none of these

hypotheses is the l-hypothesis, where 1 is the

command executed in going from p to p’.

(VN.C) The stack does not change below hypothesis

a.

The contents of the stack above Q may change in

any way. When the stack assignment p satisfies

these conditions for all program transitions, we say
that (p, (W, >))—or p (when the well-founded rela-
tion (W, >) is understood from the context)—is a fair

termination measure.

4.2 Example

Here is an argument explaining why the stack asaer-

tion of P4’ satisfies (VF). Consider an iteration not
leading to termination. There are three cases depend-

ing on which command is executed:

e.4.

&:

The T-hypothesis is active, because p~ =

max{y – z, O} decreases (since z < y holds be-

fore 1= is executed). There is nothing beneath

the T-hypothesis to check.

Below the &hypothesis, the stack remains un-

changed and the T-hypothesis is not invalidated.

234

D c1
I

- ~c?i~; l&Z
----- ____

-lxiii)- ---
---- ____ _ BCl:w

s

P(P)

BCY:w’

s

/J(P’)

Figure 1: Verification condition.

The la-hypothesis is active. because & is not ex-
ecuted, ~~d before execution of th, either z = O

(mod 117) holds, i.e. 1. is enabled, or z # O

(mod 117) holds, i.e. pt. = .z mod 117 decreases.

-f?C:The stack is unchanged below the &hypothesis.

The lb-hypothesis is active, because lb is enabled

but not executed. The la-hypothesis is non-
invalidated, because 1= is not executed.

4.3 Soundness

Theorem 1 (Soundness of Fair Termination

Measures) If P has a fair termination measure, then

P fairly terminates.

(See the Appendix for all proofs.)

4.4 Completeness

Theorem 2 (Completeness of Fair Termination

Measures) If P fairly terminates, then P haa a fair

termination measure.

To prove Theorem 2, we first present a simple com-

pleteness proof, which applies to programs that are
tree-like. A program is tree-like if it haa a single ini-

tial state p“ and if every state p’, except p“, has exactly

one predecessor, i.e. there is exactly one p such that

there is a transition p + p’. Any program can be

made tree-like by adding a history variable recording

the past sequence of program states.

Theorem 3 If P fairly terminates and is tree-like,

then P has a fair termination measure.

To prove Theorem 2 for an arbitrary program P, we

apply Theorem 3 to the tree-like program P’ that is
obtained by adding a history variable to P. The value

of the progress measure for a state p of P is then

chosen as the least vaiue of the progress measure of

states in P1 that correspond to p; here “least” means

Jirrelevant

the command

executed is not

in here

least with respect to a cross-product ordering on the

progress mea3ures of PI.

4.5 Relative Completeness

It is not hard to see that the completeness result in

Theorem 3 can be sharpened to show that an effec-

tively represented fair termination measure exists for

an effectively represented program P (a program that

has a recursive transition relation3 and a recursive

function that for all p’ defines the state p (if it ex-

ists) such that p + p’.) In fact, this measure can

be obtained uniformly from P. To see this we define

a fair termination semi-measure (p, (W, >)) to be a

fair termination measure except that W need not be

well-founded; thus p is just required to satisfy the ver-

ification conditions.

Theorem 4 There is a recursive function h that given

an index for a tree-like program P gives indices for a

fair termination semi-measure (p, (W, >)), where both

p and (W,>) are recursive. Moreover, (p, (W’, >)) is a

fair termination measure (i.e. (W, >) is well-founded)

iff P is fairly terminating.

This theorem gives an explicit reduction of the fair ter-

mination problem to a classical 11~-complete problem

of whether a recursive relation is well-founded. More-

over, it shows that if the assertional language includes

usual predicate logic on numbers (and therefore all re-

lations in the arithmetic hierarchy by a fundamental

result of Godel, see [Rog67]), then there exists a stack

a3sertion

3A recursive Telatio n is also called a recursively computable
relation, see [Rog671.

235

where the a‘s and w‘s are definable in the assertional

logic, that satisfies the verification conditions.

Thus we obtain:

Corollary 1 (Relative Completeness of Stack

Assertions) If the assertional language contains

predicate calculus and if P fairly terminates, then P

can be annotated with stack assertions in terms of the

program history such that the verification conditions

are satisfied.

5 Discussion

The results presented here are related to the method

of helpful directions [Fra86, GFMdRv85, LPS81] and

the Rabin measures of [KK91].

Formulated in our terminology, the method of helpful

directions is used to identify one level of the fair ter-

mination measure at a time. For example, one first

identifies subsets of program states corresponding to

a constant p~ measure. Then the program is trans-

formed into several new programs, each corresponding

to a subset. The states of each derived program are

then further partitioned according to unfairness hy-

pothesis (helpful directions) of the first level to yield

more subsets, which are expressed as more derived

programs.

Our approach is also related to the Rabin progress

measures of [KK91, Kla90]. A Rabin progress mea-

sure is defined as a mapping from the program states

into a colored tree. This mapping can be described in

program assertions by specifying the progress values
for each program state. The problem is that the col-

ored tree has to be explicitly described (as it was done

in an example given in [KK91]). In contrast, the stack

assertions given in this paper are self-cent ained.

There are some technical differences that have been

introduced to make stack assertions more useful for

program annotation:

● Two stacks may cent ain the same progress values,

but be colored differently. In a Rabin progress

measure the coloring is a function of the progress

values. Thus it is not possible to translate directly

a fair termination measure into a Rabin progress

measure.

● For a Rabin progress measure, satisfaction of an

enabling condition is expressed in terms of the
new state. For stack assertions, the satisfaction

of the enabling condition is considered in terms

of the old state and the new state.

● There may be several choices for an active hy-

pothesis. For Rabin progress measures the active

hypothesis is uniquely determined for each tran-

sition.

Acknowledgements

Thanks to Martin Abadi for very helpful comments.

Dexter Kozen, Fred B. Schneider, and Mike Slifker

also provided valuable comments on earlier versions

of this paper.

References

[AFK88]

[AL91]

[A083]

[AP86]

[APS84]

[DH86]

[FK84]

[F1067]

[Fra86]

[GFMdRv85]

[GH82]

[Gri81]

K.R. Apt, N. Francez, and S. Katz.

Appraising fairness in languages for

distributed programming. Distributed

Computing, 2:226-241, 1988.

M. Abadi and L. Lamport. The exis-

tence of refinement mappings. Theoret-

ical Computer Science, 82(2):253–284,

1991.

K.R. Apt and E.-R. Olderog. Proof

rules and transformations dealing with

fairness. Science of Computer Program-

ming, 3:65–100, 1983.

K.R. Apt and G.D. Plotkin. Count-

able nondeterminism and random as-

signment. JA CM, 33(4) :724–767, 1986.

K.R. Apt, A. Pnueli, and J. Stavi.

Fair termination revisited with delay.

Theoretical Computer Science, 33:65–

84, 1984.

1. Dayan and D. Harel. Fair termina-

tion with cruel schedulers, Fundament a

Informatica, 9:1–12, 1986.

N. Francez and D. Kozen. Generalized

fair termination. In Proc. Ilth POPL,

Salt Lake City. ACM, January 1984.

R. Floyd. Assigning meaning to pro-

grams. In Mathematical Aspects of

Computer Science XIX, pages 19–32.
American Mathematical Society, 1967.

Nissim Francez. Fairness. Springer-

Verlag, 1986.

0. Grumberg, N. Francez, J .A. Makow-

sky, and W.P. de Roever. A proof
rule for fair termination of guarded

commands. Information and Control,

66(1/2):83-102, 1985.

Y. Gurevich and L. Barrington. Trees,

automata, and games. In Proceedings

Iith Symp. on Theory of Computing.

ACM, 1982.

David Gries. The Science Of Program-

ming. Springer-Verlag, 1981.

236

[HaT86]

[KK91]

[Kla]

[Kla90]

[Kla91]

[Kla92]

[KS93]

[LPS81]

[Mai89]

[Mor90]

[Mos74]

D. Harel. Effective transformations

on infinite trees with applications to

high undecidability, dominos, and fair-

ness. Journal of the ACM, 33(1):224-

248, 1986.

N. Klarlund and D. Kozen. Rabin mea-

sures and their applications to fairness

and automata theory. In Proc. Sixth

Symp. on Logic in Computer Science.

IEEE, 1991.

N. Klarlund. Liminfprogress measures.

In Proc. of Mathematical Foundations

of Programming Semantics 1991. To ap-

pear in LNCS.

Nils Klarlund. Progress Measures and

Finite Arguments for Infinite Comput-

ations. PhD thesis, TR-1 153, Cornell

University, August 1990.

N. Klarlund. Progress measures for

complementation of u-automata with

applications to temporal logic. In

Proc. Foundations of Computer Sci-

ence. IEEE, 1991.

N. Klarlund. Progress measures, im-

mediate determinacy, and a subset con-

struction for tree automata. In Proc.

Seventh Symp. on Logic in Computer

Science, 1992. To appear.

N. Klarlund and F.B. Schneider. Prov-

ing nondeterministically specified safety

properties using progress measures. To

appear in Information and Computa-

tion, 1993.

D. Lehmann, A. Pnueli, and J. Stavi.

Impartiality, justice and fairness: the

ethics of concurrent termination. In

Proc. 8th ICALP. LNCS 115, Springer-

Verlag, 1981.

M.G. Main. Complete proof rules

for strong fairness and strong extreme-

fairness. Technical Report CU-CS-447-

89, Department of Computer Science,

University of Colorado, 1989.

J .M. Morris. Temporal predicate trans-

formers and fair termination. Acts In-

formatica, 27:287-313,1990.

Y.N. Moschovakis. Elementary Induc-

tion on Abstract Structures. North-

Holland, 1974.

[MP91]

[Rog67]

[Saf92]

[SdRG89]

[Sis91]

[Var87]

Z. Manna and A. Pnueli. Completing

the temporal picture. Theoretical Com-

puter Science, 83:97-103, 1991.

Hartley Rogers, Jr. Theory of Recursive

Functions and Effective Computability.

McGraw-Hill Book Company, 1967.

S. Safra. Exponential determinization

for w-automata with strong-fairness ac-

cept ante condition. In Proc. 2#h Sym-

posium on Theory of Computing, 1992.

F.A. Stomp, W.P. de Roever, and R.T.

Gerth. The p-calculus as an assertion-

language for fairness arguments. Infor-

mation and Computation, 82:278–322,

1989.

A.P. Sistla. Proving correctness with
respect to nondeterministic safety spec-

ifications. Information Processing Let-

ters, 39(1):45–50, July 1991.

M. Vardi. Verification of concur-

rent programs: The automata-theoretic

framework. In Proc. Symp. on Logic in

Computer Science. IEEE, 1987.

Appendix: Proofs

Proof of Theorem 1

Assume that P has a fair termination measure p(p)

and that po, pi,. . . is an infinite computation. We

must prove that PO,PI, . . . is unfair. To see this we

let ~~ be the level of the active hypothesis of the tran-

sition pi - pi+l and we define /c = lim infi+w Ki, i.e.

K is the least value of Ki that occurs infinitely often.

Then from some point on Ki is always at least K, i.e.

there is a K such that for all i ~ K, ~i ~ K.

It is not hard to see that K > O; in fact, if ICwas O, then

the values of the T-measure would form a sequence

PT(PO) k PT(P1) k ‘ “ “ (b (VA) and (VN.C)),4 where
infinitely often the inequality is strict, namely each

time ~i = O. This contradicts that (W,>) is well-

founded.

Thus ~ > 0 and there is an t such that for all

i ~ K, the hypothesis at level K is an t-hypothesis

(by (VN.C)) and this hypothesis is non-invalidating
(by (V~O.l)). It follows that 4 is executed only finitely

often, To see that the computation is unfair with re-

spect to 1, we now only have to prove that 1’ is enabled

infinitely often.

Assume the opposite is true. Thus for some H ~ K,
it holds for all i > H that 1 is not enabled and

4W k w’ means that w = w) or w > w’.

237

---- -

---- -

n =n=n
4

P(PH)

WH

level N

level 1

level O

active

/J(PH+l) @H+2)

+ WH+I = WH+2 =

Figure 2: Soundness.

:

IN : new

el : new

T : new
L)

/4P0)

Figure 3: Initial stack.

the l-hypothesis has the form t : w~. As indicated

in Figure 2, the values wi = /./ (pi), i ~ H, give

rise to an infinite descending sequence in W, because

WH & WH+I & 00. (by (VA) and (VN..I)) with strict
inequalities whenever ~i = ~. This contradicts that

(W, >) is well-founded.

Proof of Theorem 3

Assume that P fairly terminates and that there are N

different commands. The proof is by a construction

that defines the stack p(p’) in terms of the stack p(p)

when there is a transition p + p’. Because the pro-

gram is tree-like, this construction will define a unique

value of p for all p. The progress measures of the hy-

potheses take on values in a countable set W equipped
with a relation >. Both W and > are initially empty.

The stack of p“ is as illustrated in Figure 3. Here we

created at levels 1 to N an hypothesis for each com-

/@H+3)

WH+3

active

~(pH+4)

mands li. The order of the hypotheses does not matter

at this point. Each inst ante of new means that a new

element is added to W. Hence creating the stack p(p”)

results in there being N + 1 elements in W, whereas

> remains empty.

When we create the stack p(p) and use new to create
a new element w at level K, we define ~(w) = p and

A(w) = R. Thus ~(w) denotes the program state where

w is first used, and ~(w) denotes the level where w is

used.

Now assume that p(p) has been defined and that there

is a transition p + p’ with 4 denoting the command

that is being executed. The idea behind the construc-

tion of p(p’) is to keep aa much of p(p) as possible. To

state this more precisely we say that an !’-hypothesis

in p(p) is naturally active if 1’ is enabled in p or pl and
the et-hypothesis is below the t-hypothesis.

Case 1 If there is a naturally active hypothesis, let a

be the naturally active hypothesis at the lowest level.

The new stack becomes as illustrated in Figure 4. Here

everything below a, indicated by S, is preserved. Also,

the hypotheses above S are preserved, but their mea-

sures all change to new values.

Case 2 If there is no naturally active hypothesis, we

let a be such that the a-hypothesis is the one just be-
low the t-hypothesis. Note that it may happen that

a = T. The a-measure takes on a new value w’, and

we add w + w’ to the relation + and say that a is

forced active; in addition, the hypotheses above a are

rot ated one step downwards: Note that the 1 is moved

upwards (unless there is only one unfairness hypoth-

esis in the stack) and that it is the only hypothesis
moved upwards.

Whether p(p’) is constructed according to Case 1 or

238

P(P)

Figure

en:–

el:–

e:–

B
tn : new

11: new

/’ : new

s

P(P’)

4: New stack in Case 1.

3 ae:new

In : new

11 : new

l-ls
P(P’)

igure 5: New stack in Case 2.

Case 2 above, the requirements (VA), (VNO.l), and

(VNoc) can be seen to be satisfied for the transition
p * p’. Note also that when a is an active hypothesis,

then there are no hypotheses below that can be active.

Thus to finish the completeness proof we only need to

show that (W, >) is well-founded. We use the following

properties:

Claim 1 If p + p’, t(w) # p’, and ~“(p’) = w, then

Pa(P) = w and the position of the a-hypothesis did
not change on p + pt. Moreover, if a is a label t,

then 1 is not enabled and not executed on p + p’,

Also, the hypothesis just above the a-hypothesis in

P(P) does not change position and it is non-invalidated
onp+ p’.

Proof By considering Case 1 and Case 2 above. ❑

Claim 2 Let w and w’ be elements of W such that
w + w’ and let ~ = A(w). Let a by the hypothesis at

level ~ in p(~(w)).

(a) There is a path Pww’ = po, . . .pn with p. = L(W)

and pn = ~(w’) such that the active level for pi + ~i+l

is greater than ~ for i < n — 1, and such that for

pn - 1 + pn the hypothesis a is forced active.

(b) Moreover, no command ~f an hypothesis at or be-

low R is enabled along PWJW .

Proof (a) By Claim 1, every p such that pa(p) = w

is reachable from ~(w) along a path where

● a is at level tc,

. if a = 1?# T, then 1 is not executed and 1 is not

enabled, and

● Pts has the constant value w.

Since P is tree-like, there is a unique path po, p~-l

with p. = t(w) such that there is a transition pn_l +

pn = ~(w’), where P(P~) is constructed according to
Case 2 and a is the hypothesis forced active.

(b) This follows from the choice of active hypothesis.,
in Case 1 and Case 2, •1

Now sssume that there is an infinite descending se-

quence wo + WI + . . . in W. By (a) of the Claim, an

infinite path P containing ~(wo), ~(wl), . . . can be put

together from the paths Pw; ~w~+’. Along this path the

active level is always at least ~ = A(wo) = J(w1) =

Let a be the hypothesis at level ~. The commands

that are executed infinitely often are above a, since

(VN~.1) is satisfied. Also any command e’ that is ex-. —---/
ecuted only finitely often is eventually at level K. or

below, because from the point where l’ is no longer

executed, the l’-hypothesis can only move downwards

in the stack and will eventually settle at some level;

this level is at most R, because the hypotheses above

K are rotated infinitely often, namely each time a is

forced active.

By the assumption that P fairly terminates, there is a

command 1 that is executed finitely often and enabled

infinitely often. By the previous argument, the 1-
hypothesis is at level K or below. But the l-hypothesis

being infinitely often enabled then contradicts (b) of

the Claim. Hence there are no infinite descending se-

quences in W, i.e. (W,>) is well-founded. c1

Proof of Theorem 2

The idea of the proof is similar to the use of the Sewing

Lemma in [Kla92] for the immediate determinacy re-

sult of certain infinite games.

239

—

Assume that P fairly terminates. Also assume that
there is a function L such that on any transition
p ~ PI, the value Z(p’) denotes the command exe-

cuted in going from p to p’ (the program state space

and transition relation can always be extended to con-

tain this information). By adding a history variable

to P, we obtain a program ~, which also fairly termi-

nates. A state of ~ is on the form u = (PI, p~) and

the transitions of ~ are on the form (Pi, p~) ~

(PI , . . . ,pn+l), whe~p~ ~ p~+I is a transition of P.
The initial state of P is (pa), where p“ is the initial
state of P. For u_= (pl, . . . , p.) define PU = pn.
The set of states of P form a tree with root (p”). If
p -+ p’and pu = p, then the state u . p’ (which is list

gotten by appending p’ to the right end of u) is a child

of cr. A state u is an ancestor of a state u’ if there

areuo, ..., an such that U+l is a child of ai for i < n

and co = u and u. = u’. Define ~(u) = ,C(pU). Let

P designate the fairness measure given by the com-

pleteness proof of Theorem 3. The mapping ~

can be specified by a mapping a that to each u as-

sociates a list ~(u) = (T, 11, 1~) specifying the
ordering of the hypotheses in the stack ~(u) and by

a mapping ~ : ~ - WN specifying for each c a list

W=(WO, ..<, WN) denoting the values of the progress

measures at levels O to N + 1. For a list w, the i’th

component is denoted w [i] and the sublist consisting

of components from i to j is denoted w [i.. j]. We may

assume that (W, >) is totally ordered, i.e. is a well-

ordering. We define an ordering, also denoted +, on

WN+l by w > w’ if for some i, w[i] > w’ [i], and for

all j < i, w ~] = w’ [j]. Then > is a well-ordering.

Now define O(p) = ~(u) and a(p) = ~(u), where u
is chosen such that pa = p and ~(u) is minimal with

respect to +.

Claim 3 If ~(u)[O..n] = ~(a’)[0..n], then =(u)[O..n+

1] = ?Z(c+)[o..n+ l].

Proof This follows from Claim 1. ❑

For w, w’ c WN+l, define Iw, w’I = h, where h ismax-
imal such that for all j ~ h, w[j] = w’~].

Now consider a transition p ~ p’ of P and let us

prove that there is an a-hypothesis such that (VA),

(vNom), and (VNoC) are &filled. Let w = O(p) and
w’ = tl(p’). Then w = 6(cT) for some u such that
pm = p, Let w -(“ = O a - p’). By d~finition of O(p’),

w“ & w’. Also, let u’ be such that 6(u’ . p’) = i9(p’).

There are two cases:

Case w + w’: Let h = Iw, w’{. By Claim 3,
a(p)[O..h + 1] = cx(p’)[O.. h + 1]. Thus ci(p)[h+ 1] is

adive and the Stack below is unchanged, whence (VA)

and (VNOC) are satisfied.

By definition of h, ~(u’ . p’)[0..h] = ~(u) [O..h]. Thus

the values in ~(u’p’) [0. .h] are created in an ancestor

of u’ . p’ and therefore ~(u’)[0..h] = ~(u’p’)[0..h] by

Claim 1. Also by Claim 1, it follows that J2(p’) = ~(a’.

p’)—the command executed on p + p’—is not among

=(u’ . p’)[0..h+l] = cx(p’)[0..h+l], whence (VNOnl) is

satisfied.

Case w < w’: We have w“ ~ w’ &w. Let h = Iw, w’[.

By construction of P, the hypothesis at level h + 1

is naturally active for the transition u ~ u . p’

of ~. But since w“ ~ w’ ~ w, it can be seen

that w“ [0. .h] = w’[0. .h] = wIO. .h]. It follows that

cK(p)[O. .h+l] = cx(p’) [0. .h+l] and that the cu(p)[h+l]-
hypothesis is naturally active for p ~ p’ of P, whence

(VA) and (VNOC) are satisfied. It can be seen in the

same manner as in the previous case that (VNOnl) is

also satisfied ❑

Proof of Theorem 4

Given an effectively represented program P and a pro-

gram state p, itis possible to calculate the sequence of
program states, starting at the initial state, that leads

top. Thus the tree can be effectively traversed (even if

it is infinitely branching). This traversal ensures that

each time “new” is invoked, a unique progress value

is returned. For example, we can represent W using

the natural numbers; successive invocations of “new”

then gives progress values ‘O,’ ‘1,’. . .Note that the re-

lation + calculated on W is not the usual ordering on

the natural numbers. Given a state p, the tree is tra-

versed until p is encountered. At any program state,

the value of the stack is calculated according to the

the procedure given in the proof of Theorem 3. It fol-

lows that the value of the fair semi-measure at p can

be recursively calculated. Similarly the relation i > j

can be seen to be recursive. By standard techniques

of computability theory, the above procedure can be

expressed formally as a recursive function h satisfying

the properties in the statement of the Theorem. 0

240

